Tag Archives: data

Cross-site Comparison of Land-Use Decision-Making

The cumulative effects of local land-use and livelihood changes are a global force of environmental and socio-economic change. Land-use changes result from decisions of individual farmers, pastoralists,  and housing consumers and developers (to name a few). Their decisions are influenced by not only local environmental, social, and economic conditions, but also by far-reaching forces such as economic globalization. The choice of a farmer in Brazil to grow soybeans, for example, can be influenced by the consumption of people in China.

Not all land-uses are created equal. Some have minimum impact on the environment, and some offer sustainable livelihoods for local farmers – finding land uses that accomplish both is difficult. Crafting policies to achieve this two-part goal must contend with both local and global considerations.

Location of one of the study sites near Taoyuan, Hunan Province, China.

A study site near Taoyuan, Hunan Province, China.

On January 29th, my colleagues and I published a paper in PLoS ONE, titled “Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model” that describes the development and application of an agent-based virtual laboratory for comparing  land-use and livelihood decision-making processes of rural farmers across geographically distant locations and qualitatively different land-use systems. We use this modeling system across multiple study sites to understand the underlying motivations and rationale of land-use and livelihood decisions of our ‘farmer agents’ and the landscape and livelihood changes that result under various environmental, demographic, and economic scenarios.

Since the traditional mode of scientific experimentation is not feasible with real land-use systems – we are talking about people’s land and livelihoods here – we use simulation-based cross-site comparisons to teach us about what drives the choice of particular land uses and livelihood strategies under different conditions. We use the set of study sites as local examples to synthesis more broadly applicable knowledge of which factors are most important in what contexts.

To explore this question, our investigation had to happen at the decision-making level – a task to which agent-based models are well suited. We also needed a modeling framework that was sufficiently general that it could be applied across multiple locations, yet realistic enough that it could be grounded in real-world data. These needs gave rise to an innovative agent-based virtual laboratory approach that provides a powerful tool for model-based experimentation and synthesis.

Such a model synthesis system can generate the kind of high-level knowledge needed to inform regional policies designed to foster sustainable local land uses and livelihood strategies. Cross-site comparisons use each study site as an example of alternative conditions and/or potential future states, which can aid scenario analysis and the exploration of potential adaptive responses to changing conditions. Furthermore, insights gained from the application of the modeling system to one site can improve our understanding of other similar sites, and foster future research and policy efforts that are sensitive to both the global influence on and local realities of land-use and livelihood change.

Click here to see the web story about this article on SESYNC’s blog.

New Funding Opportunity: Data-Intensive Analysis and Modeling for Socio-Environmental Synthesis at SESYNC

The National Socio-Environmental Synthesis Center (SESYNC) is inviting proposal submissions for a special funding opportunity designed to support projects pushing the boundaries of computational research in socio-environmental systems. Relevant projects could include (but are not limited to) harmonizing large and/or heterogeneous social and environmental data to answer novel research questions, or developing modeling approaches or applications that are computationally challenging. SESYNC can provide technical support in-house or fund a project team member with sufficient technical skills.

This is an excellent opportunity to push the computational frontiers of your research!

The opportunity listing can be found here: www.sesync.org/opportunities/data-modeling-ses

Submission instructions can be found here: www.sesync.org/opportunities/data-modeling-ses#instructions

New Paper: Pattern-Oriented Modeling in Multi-Scale ABMs of Land Change

TGIS_screen_captureA particular challenge of investigating the causes of land-use change is the multi-scale nature of factors that influence land-use decisions. In an increasingly globalized world, land-use choices and livelihood strategies are linked to local AND regional to global forces. But attempts to incorporate such multi-scale causation in land change models often run into significant knowledge and data gaps – especially when trying to link incomplete and/or low quality global data to individual agents’ decision-making processes.

Figure4_mainOne way forward, which my co-author Dr. Erle Ellis and I present in this new open-access article in Transactions in GIS, is to use pattern-oriented modeling (Grimm et al., 2005) within an agent-based virtual laboratory to experimentally bound the possible values of uncertain parameters. By targeting characteristic patterns tied to important individual- and landscape-level processes – the selection of which are informed by theory, data, or both – ABMs can be designed and tested to be more realistic despite data limitations. We propose that this experimental method can help overcome significant data gaps, and help land change scientists begin to quantify some global trends in local land change processes.

Comments welcome!


Local land-use and -cover changes (LUCCs) are the result of both the decisions and actions of individual land-users, and the larger global and regional economic, political, cultural, and environmental contexts in which land-use systems are embedded. However, the dearth of detailed empirical data and knowledge of the influences of global/regional forces on local land-use decisions is a substantial challenge to formulating multi-scale agent-based models (ABMs) of land change. Pattern-oriented modeling (POM) is a means to cope with such process and parameter uncertainty, and to design process-based land change models despite a lack of detailed process knowledge or empirical data. POM was applied to a simplified agent-based model of LUCC to design and test model relationships linking global market influence to agents’ land-use decisions within an example test site. Results demonstrated that evaluating alternative model parameterizations based on their ability to simultaneously reproduce target patterns led to more realistic land-use outcomes. This framework is promising as an agent-based virtual laboratory to test hypotheses of how and under what conditions driving forces of land change differ from a generalized model representation depending on the particular land-use system and location.

Story Map of Global Crop and Land-Use Data


Source: ESRI Story Map and the Institute of the Environment, U. of Minnesota.

I’ve used these global crop and land-use data many times, as they are excellent data sets by Foley et al (2011) and Monfreda et al. (2008). But this visualization in the form of an ESRI story map gives the data new life and power. An excellent and thought-provoking presentation, which is made all the better with its interactive qualities.

I will have to explore such a presentation for conveying the results of spatial ABMs.

Decision-Making and Data

Cross_scale_dataThe popularity of agent-based modeling has exploded in the past decade – and for good reason. More and more researchers are recognizing that human decision-making – as messy and unpredictable as it seems – is an incredibly powerful driver of human and natural system dynamics. Agent-based models (ABMs) offer the means to test our understanding of decision-making processes and their consequences with more sophisticated (and often more realistic) simulations. Despite this growing popularity, though, ABMs introduce new and profound challenges in their use, testing, and interpretation.

A question that I am confronted with regularly – and have been thinking a lot about recently – is this: “What are the spatial and temporal scales of human-decision-making relevant to the land change phenomenon I want to study?”

I will likely return to this question in some form or another many times on this blog, but lately I am concerned with the data dimensions of this question. For example, if one wants to model household-driven land use changes in frontier regions (e.g. Parker et al., 2008), then land-use decisions at the household level are probably your likely target. However, what if you want to apply this model over a large region? With lots of agents? Or have it be general enough to apply across many sites in different land-use systems ( a la virtual laboratory!)? Then the relevant level of decision-making becomes murkier, especially when considering the data that will be needed to parameterize and test the model. In this example, you might need to combine household surveys, regional land-use/cover data, census data, and perhaps some global data such as market influence (Verburg et al., 2006).

Much has been written on this topic, and as there are many facets to this challenge, there are also many different ways to address it. The various perspectives on this issue seem to consistently fall into categories:

  • How to coordinate different sources of data?
  • What types of data should be used to test the model?
  • What is the focal scale of analysis?

These questions are often raised in the context of using ABMs in combination with a geographic information system (GIS). Crooks and colleagues (2008), Parker (2005), and Brown and colleagues (2005) are good sources to begin answering these questions.

For our purposes here, I’ll ask a simpler question: How does one get these different kinds of data that cover different scales and resolutions to play nicely together?

Coordinating the scale and/or resolution of spatial data in a GIS with those of the decision-making processes in an ABM can be quite tricky. So, as the modeler, you have to make some choices about how closely the model should be “coupled” with the GIS: 1) Spatial data layers can be used simply to initialize an ABM by parameterizing the simulated landscape; 2) GIS and the ABM can be “loosely coupled” such that spatial data files are updated independently and then passed back and forth at designated times; or 3) the ABM can be fully embedded within the GIS (e.g. the new Agent Analyst tool with Repast). The choice of either of these methods will depend on factors such as the research question and the computational expense of passing files between systems. Whichever path one chooses, though, the challenge of coordinating low resolution spatial data with fine-grain social data remains.

Arguably a more important consideration, then, is the level of abstraction within the model. I have recently toyed with this question in a model in which my agents represent aggregations of households in settlements rather than individual households. This, of course, has some conceptual limitations. However, it has important conceptual and practical advantages as well; in particular, the ability to represent a landscape-level entity generally by avoiding some social interactions among households that are notoriously difficult to generalize. This representation is certainly controversial (and probably nonsense to some household livelihoods researchers), but considering the types of data needed to address regional land-use questions, an agent representation that works nicely with global datasets is not entirely a bad thing.

Thus, I will plant this seed: In what situations does a settlement-level agent act as a reasonable representation of land-use decision-making? This is an ongoing topic of research for me, and will undoubtedly lead to subsequent posts. Stay tuned!


Brown, D.G., Riolo, R., Robinson, D.T., North, M., and Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographical Systems, 7:25–47.

Crooks, A. T., Castle, C. J. E., and Batty, M. (2008), Key Challenges in Agent-Based Modelling for Geo-spatial Simulation. Computers, Environment and Urban Systems, 32(6): 417-430.

Parker, D.C.  (2005). Integration of geographic information systems and agent-based models of land use: Prospects and challenges. GIS, Spatial Analysis, and Modeling (2005): 403-422.

Verburg PH, Ellis EC, Letourneau A (2011) A global assessment of market accessibility and market influence for global environmental change studies. Environ Res Lett, 6.